#### OHIO SEA GRANT AND STONE LABORATORY

# Understanding the Critical Issues Impacting Lake Erie: Nutrient Loading, HABs, AIS, and Climate Change

Dr. Jeffrey M. Reutter Director, Ohio Sea Grant College Program







## Jeffrey M. Reutter, Ph.D., Director

- •1895—F.T. Stone Laboratory
- •1970—Center for Lake Erie Area Research (CLEAR)
- 1978—Ohio Sea Grant College Program
- 1992—Great Lakes Aquatic Ecosystem Research Consortium (GLAERC)
- Grad student at Stone Lab in 1971 and never left. Director since 1987.







#### **OHIO SEA GRANT AND STONE LABORATORY**

















# Research Vessels AND STONE LA (STABLUCKEYE)



Ohio Sea Grant College Program





THE OHIO STATE UNIVERSITY



# Lake Erie's 6 Biggest Problems/Issues

- Sedimentation
- Phosphorus and nutrient loading
- Harmful algal blooms
  - Western, Central, and Eastern Basin Differences
  - Different problems in different lakes (possibly more difficult than Lake Erie)
- Aquatic invasive species
- Dead Zone—exacerbated by nutrients
- Climate Change—Makes the others worse









#### **Southernmost**









#### **Shallowest and Warmest**









#### **Discuss 3 Basins & Retention Time**









#### 80:10:10 Rule

- •80% of water from upper lakes
- 10% direct precipitation
- 10% from Lake Erie tributaries
  - Maumee
    - Largest tributary to Great Lakes
      - Drains 4.2 million acres of ag land
    - •3% of flow into Lake Erie







#### **Discuss 3 Basins & Retention Time**









#### Major Land Uses in The Great Lakes









#### **Because of Land Use, Lake Erie Gets:**

- More sediment
- More nutrients (fertilizers and sewage)
- More pesticides
- (The above 3 items are exacerbated by storms, which will be more frequent and severe due to climate change.)
- And Lake Erie is still biologically the most productive of the Great Lakes—And always will be!!!







#### 50:2 Rule

(Not exact, but instructive)



#### Lake Superior:

50% off the water and 02% of the fish







# Lake Erie: One of the Most Important Lakes in the World

- Dead lake image of 60s and 70s.
- Poster child for pollution problems in this country.
- But, most heavily utilized of any of the Great Lakes.
- Shared by 5 states, a province, and 2 countries.
- Best example of ecosystem recovery in world.







#### **OHIO SEA GRANT AND STONE LABORATORY**









### Blue-green Algae Bloom circa 1971, Lake Erie



Photo: Forsythe and Reutter







### Major groups/kinds in Lake Erie







**Diatoms** 

Source: Tom Bridgeman, UT

Greens









# What brought about the rebirth (dead lake to Walleye Capital)?

• Phosphorus reductions from point sources (29,000 metric tons to 11,000).







## Impact of Ecosystem Recovery (rebirth)

- Ohio walleye harvest 112,000 in 1976 to over 5 million by mid-80s
- 34 charter fishing businesses in 1975 to over 1200 by mid-80s and almost 700 today
- 207 coastal businesses to over 425 today







# Why did we target phosphorus?

- Normally limiting nutrient in freshwater systems
- P reduction is best strategy ecologically and economically
- Reducing both P and N would help







#### **Dissolved Reactive Phosphorus Concentration**









## **Major Sources of Phosphorus**

- Lawn fertilizer—going down
- Sewage treatment plants and CSO's
- Non-point source runoff from urban
- Non-point source runoff from agriculture
- •1970s—2/3 poor sewage treatment
- Today—2/3 agricultural runoff









## Where did the dissolved phosphorus come from?



Dissolved phosphorus is highly bioavailable to algae

Indicators of non-point sources *e.g., land runoff*Example: Maumee River



Indicators of point sources *e.g., effluent*Example: Cuyahoga River

#### 1) Concentration increases during storms



#### 1) Concentration increases during low flow



#### 2) Concentration increases with flow



#### 2) Concentration decreases with flow



#### e.g., land runofOHIO SEA GRANT AND STONE LABORATORY e.g., effluent





82% of the load delivered in the highest 25% of flows

#### Since 1995, dissolved phosphorus has been increasing in



#### Example: Cuyahoga River



40% of the load delivered in the highest 25% of

#### Recently, dissolved phosphorus has been low



Loading between March and June has the strongest effect on Lake Erie bloom intensity

# **Nutrient Loading**

- Majority of loading occurs during storm events
- •80-90% of loading occurs 10-20% of time
- •2012 = dry spring and low load—a very good thing!!





# **2013 Spring Cumulative Discharge** and Dissolved Phosphorus Loads

2013 discharge

2013 dissolved P











# Climate change is making these problems worse!

- Warm water increases oxygen depletion rates
- More severe storms will resuspend more sediment and increase erosion and nutrient loading
  - Critically important point—with no changes in Ag practices, warmer weather and increased frequency of severe storms could increase negative impact of existing practices.
- Lake levels—uncertain/probably down
- Warm water favors HABs









## **Increased Frequency of Rainstorms**



## AIS: Zebra/Quagga Mussels & Round Gobies











# Impacts of Increased Phosphorus Concentrations

- HABs—If P concentrations are high (regardless of the source, Ag, sewage, etc.) and water is warm, we will have a HAB (nitrogen concentration will likely determine which of the 7-10 species bloom)
- Nuisance Algae Blooms
  - Cladophora—Whole lake problem. An attached form.
  - Winter algal blooms
- Dead Zone in Central Basin







# 11 years of satellite data provide bloom extent









#### Toxicity of Algal Toxins Relative to Other Toxic Compounds found in Water

Reference Dose =
 amount that can be
 ingested orally by a
 person, above which a
 toxic effect may occur,
 on a milligram per
 kilogram body weight
 per day basis.









## **Microcystin Concentrations**

- •1 ppb WHO drinking water limit
- 20 ppb WHO swimming limit
- 60 ppb highest level for Lake Erie till 2011
- 84 ppb highest level for Grand Lake St. Marys till 2010
- •2000+ Grand Lake St. Marys 2010
- •1200 Lake Erie Maumee Bay area 2011







## Microcystis, Stone Lab, 8/10/10









#### **OHIO SEA GRANT AND STONE LABORATORY**









### Microcystis, Stone Lab, 9/20/13









## Are HABs only a Lake Erie and Ohio Problem?

- Serious problem in US and Canada
- 21 states and Canada in 2012
- Global problem
- Chaired Loadings and Concentrations
   Subcommittee for Ohio P Task Force
- Now US Co-Chair of the Objectives and Loadings Task Team of Annex 4 (nutrients) Subcommittee of GLWQA
- Weather can determine how we experience a bloom







### **Current Forecast**

- Based on Heidelberg and USGS measurements of Maumee River discharge and P loading 1 March – 30 June
- Rick Stumpf's model (ground truthed by Stone Lab)
- Tom Bridgeman's Maumee Bay nutrient and HAB measurements and Justin Chaffin's Western and western portion of Central Basin measurements





#### **OHIO SEA GRANT AND STONE LABORATORY**



2014 Ensemble Includes U.Michigan trial model

### Target Loads to Solve Problem

- Leading subcommittee of the Ohio Phosphorus Task Force to identify both spring and annual target loads of both total P and DRP (Reutter comment) to prevent or greatly reduce HABs
- Target is 40% reduction (Ohio Phosphorus Task Force II, 3/14/13)







# Expect Rapid Recovery in Lake Erie, but must act quickly

- Due to rapid flush out rate
  - •Lake Erie = 2.7 years
  - Western Basin = 20-50 days
- Other Great Lakes could be over 100 years
- Appears that less phosphorus is now causing blooms
  - Seedbank spread over lake bottom







#### **Discuss 3 Basins & Retention Time**









### **HABs in the Central Basin**

- **•**2012—1
- **•2013—5**
- Severity—less than Western Basin
- Algal species are different—toxicity?
- Will the Toledo situation happen again at Toledo? Cleveland? Other cities?







### **Immediate Needs**

- Arm water treatment plants with tools, technology, and training to remove toxins
  - Assures that plants produce safe drinking water
- Reduce load of P into Lake Erie by 40%
  - Eliminates HABs and toxins







### **Issues to Consider**

- Should we be using corn, a food product, for ethanol production?
- Can we claim that we need to produce more food is we use 40% of our corn for ethanol?
- Farmers are using phosphorus more efficiently.
- Lots of farmers are doing a great job. How do we find the problems?
- How long do we try to do this voluntarily?







# Stone Lab: Reducing Our Environmental Footprint

- Solar thermal on Dining Hall
- Solar panels on new pavilion and Lab roof
- Low-flow toilets
- Low-flow shower heads and faucets
- Compact fluorescent light bulbs or LEDs
- Attic insulation
- 4-cycle outboard motors
- Improved sewage treatment
- Terraces to reduce runoff



### **Sustainable Energy Production**









### **Solar Pavilion**









### **Solar Thermal on Dining Hall**









# Stone Lab: Improve facilities and capabilities to address issues

- Stone Lab
- Research Building
- Water quality laboratory
- Research Vessels and equipment
- Research Coordinator
- Education and Outreach Coordinator
- Aquatic Visitors Center
- REU program







### Sea Grant Research Projects

• Beneficial reuse of dredged material in manufactured soil blending: Economic/logistical and performance considerations

PI: Elizabeth Dayton, Ohio State University

Impacts of climate change on public health in the Great Lakes due to harmful algae blooms

PI: Jay Martin, Ohio State University

• Should nitrogen be managed in Lake Erie? The potential role of nitrogen fixation by cyanobacteri

PI: Darren Bade, Kent State University

• Leveraging natural amenities for sustainable development in the Great Lakes region

PI: Elena Irwin, The Ohio State University

• Source tracking and toxigenicity of *Planktothrix* in Sandusky Bay

PI: George S. Bullerjahn, Bowling Green State University

Mapping drain tile and modeling agricultural contribution to nonpoint source pollution in the western Lake Erie basin

PI: Kevin Czajkowski, University of Toledo

• The role of nitrogen concentration in regulating cyanobacterial bloom toxicity in a eutrophic lake

PI: Justin Chaffin, Ohio State University

Delivery of sediment amendments using far-field ultrasound

PI: Linda K. Weavers, Ohio State University

Relative contributions of hypoxia and natural gas drilling to methane emissions from Lake Erie

PI: Amy Townsend-Small, University

### **Outreach Activities**

- 22,000 visitors to Aquatic Visitors Center
- Media Coverage
  - 403 articles from 158 different publications/venues in 2013 about our programs
- Stone Lab Workshops
- Twine Line Articles
- Personal speaking engagements
  - Over 50 last year







### Stone Lab 1 or 2-Day Workshops

- 10 July, NOAA HAB Press Conference, Science Cruise and Webinar
- 23 July, USDA Rural Development State Directors from twelve Midwest states
- 24 July, Ohio Farm Bureau Group
- 24 July, REU Presentations
- 14 & 15 August, 2 groups of Michigan farmers
- 18-19 August, Science Writers 2-day workshop
- 20 & 26 August, Coastal County Commissioners, Mayors, and Decision Makers Day on Lake Erie
- 25 August, Ohio Charter Captains
- 27 August, Indiana Farming Leaders
- 5-7 September, Annual Open House (approx 1,200 visitors)







## For more information: Dr. Jeff Reutter, Director

Ohio Sea Grant and Stone Lab Ohio State Univ. 1314 Kinnear Rd. Col, OH 43212 614-292-8949 Reutter.1@osu.edu ohioseagrant.osu.edu

Stone Laboratory
Ohio State Univ.
Box 119
Put-in-Bay, OH
43456
614-247-6500





